
Roastmaster Datagram Protocol
(RDP)
Datasheet

Copyright 2017, Rainfrog, Inc. - All rights reserved

2

Introduction to RDP and Probe Hosts
What is RDP?

RDP is a protocol we created specifically for Roastmaster that allows any processor-equipped circuit board to
send temperature data directly to Roastmaster iOS.
Historically, Roastmaster has relied on 3rd party manufacturers to produce both the hardware, as well as the
software API that Roastmaster would use to communicate with that hardware. If those APIs contain bugs, or
didn’t function correctly, there was nothing that could be done with Roastmaster to resolve it.
RDP was specially designed for Roastmaster, and is now built directly into Roastmaster’s code. Anyone can
use RDP on virtually any hardware. This removes the reliance on 3rd party vendors, and lets anyone design
and build a probe host for very little cost that can easily communicate with Roastmaster using this flexible
protocol.
It’s also fully open source, and published and publicly documented under the permissive MIT license, which
means it’s free to use by any individual or manufacturer, whether for personal or professional adoption.

What is a Protocol?

A protocol is really nothing more than a language two entities agree to “speak” in order to communicate with
each other. If you speak English, you can understand the information in this datasheet because you
understand the English language. English is, essentially, the “protocol” of this datasheet.
The same is true with software. As long as two applications or devices speak the same “language”, they can
talk to each other and share information. Since Roastmaster now “speaks” RDP, any circuit board with a CPU
and WiFi capabilities can be programmed to talk directly to Roastmaster using the language of RDP.

What is a Probe Host?

A “probe host” is required to send readings to Roastmaster. A probe host is comprised of the hardware
required to gather the data, and simple software to interpret and send this information over WiFi to
Roastmaster.
A probe host can be a DIY project, based on a popular SBC (Single Board Computer), such as Arduino,
Raspberry Pi, or Feather Huzzah. Or, it can be a professionally designed circuit board built in a roasting
appliance, designed and coded by the manufacturer to provide out-of-the-box support for Roastmaster iOS.
Whatever the specifics, as long as it can run software, read a probe, and send those readings as UDP packets
over WiFi, it can be used to communicate those readings to Roastmaster iOS.

Copyright 2017, Rainfrog, Inc. - All rights reserved

3

Networking Basics
UDP Protocol

RDP datagrams are sent using the UDP networking protocol (User Datagram Protocol).
UDP is a simple, uni-directional, streamlined networking protocol, designed for speed, low network overhead,
and easy implementation at the programming level. Most programming languages offer simple, one-line calls
to send UDP datagrams. It is very easy to write a UDP based program or sketch, without the knowledge and
effort it would require for managing the more complex networking sockets of its cousin protocol, TCP.
UDP is, however, a “best effort” protocol. Datagrams are sent to the network, destined for a particlar IP
address. The networking topology attempts to deliver them in a timely fashion, but provides no guarantee that
they will arrive, or arrive in the correct order. For this reason, it is always best to employ the “Epoch” feature of
RDP, to ensure correct packet ordering. It’s also advised to send data at least once every second, regardless of
whether any temperature data has changed, to guard against the rare case of dropped packets.

Addressing

When sending RDP data, you must supply the correct IP address of the device running Roastmaster in order
for it to receive the datagram. You can accomplish this by using either multicast or unicast.

Multicast

This method will deliver datagrams to every host on the network by using the special “all hosts” IP address
224.0.0.1. It does not require you to know the IP address of the device running Roastmaster, but will increase
network traffic because each transmission is delivered to every computer and device on your network.
This is the easiest way to code your probe host software, since it does not involve any handshaking, and can
be implemented in just a few lines of code.

Unicast

This method will deliver datagrams to only one specific IP address. It requires you to know the IP address of
the device running Roastmaster.
This requires a little more coding than the multicast method, but reduces network traffic since only one
datagram needs to be delivered.
When using the unicast method, it is not advisable to hard code the IP address of the device running
Roastmaster. In a typical DHCP network, IP addresses are usually not guaranteed on a per-device basis. When
the device is powered off, its IP address will likely change when it is powered back on.
For this reason, a host must ascertain the correct IP address via Handshaking before sending RDP datagrams,
or risk the probability of sending them to the wrong address.

Handshaking

RDP provides a built-in means of learning the target device’s IP address through a method called handshaking.
Handshaking is a simple process, in which a probe host sends a multicast RDP datagram with SYN (Sync)
information to every device via the all hosts address 224.0.0.1. When Roastmaster detects a SYN request in an
incoming datagram, it will reply with a datagram containing ACK (Acknowledgement) information.
To complete the handshaking process, your probe host software should read incoming RDP datagram replies
and look for SYN information. If found, it should cache the IP address that the datagram originated from. This
will be the IP address of the device running the target copy of Roastmaster, and complete the handshaking
process.

Copyright 2017, Rainfrog, Inc. - All rights reserved

4

Anatomy of an RDP Datagram
RDP Datagram

The root of an RDP datagram is a JSON
dictionary consisting of a series of key/value
pairs describing the datagram.
One of these key/value pairs can contain an
array, called the payload.
Within the payload array, there can be one or
more events–each one a single dictionary
consisting of key/value pairs describing that
event.

Datagram Dictionary

Payload Array

Event Dictionary

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

 {
 “RPChannel”:2,
 “RPEventType”:3,
 “RPValue”:204.87
 }

 {
 “RPChannel”:3,
 “RPEventType”:3,
 “RPValue”:37.64
 }

]

}

{
 "RPVersion":"RDP_1.0",
 "RPSerial":"My Probe Host”,
 “RPEpoch”:1468872420.114,
 “RPPayload”:

 [

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPEventType”:1
 }

]

}

 {
 “RPEventType”:2
 }

]

}

Payload

The final key in the root
datagram dictionary is
the RPPayload key. Its
value should be an array,
called the payload of the
datagram, and should
contain one or more
Event dictionaries.

Event

When Roastmaster determines that it needs to process a
datagram, it will examine the datagram’s payload, looking for
individual events.
Events each contain a numerical type, channel and value.

Header

The key/value pairs of the root
datagram dictionary form the
header. This tells Roastmaster
important information about the
data contained in the datagram,
and how to process it.
Roastmaster first checks the
RPVersion to see if it is a version it
supports, and to determine how to
decode the datagram.
Then, it reads the RPSerial value
to see if it should be interested in
any of the datagram’s information,
based on the serial fields of the
probes defined in Roastmaster.
If so, it examines the value of the
RPEpoch key. If its value is greater
than the last RPEpoch
Roastmaster encountered for that
serial string (or if no value is
supplied) it will process the
payload. Otherwise, the packet is
ignored.
Correct use of the RPEpoch value
will ensure that packets are always
processed in the correct order. If
an outdated packet arrives with an
old epoch value, Roastmaster will
simply ignore it.

{
 "RPVersion":"RDP_1.0",
 "RPSerial":"My Probe Host”,
 “RPEpoch”:1468872420.114,
 “RPPayload”:

 [

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

 {
 “RPChannel”:2,
 “RPEventType”:3,
 “RPValue”:204.87
 }

 {
 “RPChannel”:3,
 “RPEventType”:3,
 “RPValue”:37.64
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPEventType”:1
 }

]

}

 {
 “RPEventType”:2
 }

]

}

Copyright 2017, Rainfrog, Inc. - All rights reserved

5

Datagram Dictionary

Key: RPVersion Value: RDP_1.0 String

Key: RPSerial Value: String
Denotes the serial number (string) that the payload events are destined
for. This should match the appropriate probe definition in Roastmaster.
Roastmaster will assign an incoming event’s data to the probe definition
whose serial number and channel match that of the event.
You may have one or more hosts, each transmitting information bound for
one or more copies of Roastmaster at the same time. The probe definitions
in Roastmaster define which events it uses, and which it ignores.

Key: RPEpoch Value: Integer or Double
Counter or time interval type number supplied by host to ensure
correct packet order processing in Roastmaster.
It is easiest to calculate the number of milliseconds since Unix Epoch
Time (Jan 1, 1970) and supply this double-precision float. Alternatively,
you can use a simple integer counter, so long as the value is > 0.
If included, Roastmaster will ignore packets that have a lesser value
than the last one it processed, ensuring correct ordering.
If omitted, Roastmaster will process every packet in the order in which it
is received, which is not guaranteed to be the order in which it was sent.

Key: RPPayload Value: Array of Dictionaries (Events)

Payload Array of Dictionaries (Events)

Event Dictionary

Key: RPChannel Value: Integer
Corresponds to the channel defined in the
Roastmaster probe definition (1-16).

Key: RPEventType Value: Integer
(Event Type Constant)

Key: RPValue Value: Float
The probe reading in Celsius. Roastmaster will
translate as appropriate, depending on the
measurement system set in the curve using the
probe.

Key: RPMetaType Value: Integer
(Meta Type Constant)

Additional information that can further describe the
details of an event. These are currently ignored by
Roastmaster, but planned for future
implementation.

Creating an
RDP Temperature
Datagram

Copyright 2017, Rainfrog, Inc. - All rights reserved

6

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

 {
 “RPChannel”:2,
 “RPEventType”:3,
 “RPValue”:204.87
 }

 {
 “RPChannel”:3,
 “RPEventType”:3,
 “RPValue”:37.64
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

{
 "RPVersion":"RDP_1.0",
 "RPSerial":"My Probe Host”,
 “RPEpoch”:1468872420.114,
 “RPPayload”:

 [

 {
 “RPEventType”:1
 }

]

}

 {
 “RPEventType”:2
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

 {
 “RPChannel”:2,
 “RPEventType”:3,
 “RPValue”:204.87
 }

 {
 “RPChannel”:3,
 “RPEventType”:3,
 “RPValue”:37.64
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPEventType”:1
 }

]

}

{
 "RPVersion":"RDP_1.0",
 "RPSerial":"My Probe Host”,
 “RPEpoch”:1468872420.114,
 “RPPayload”:

 [

 {
 “RPEventType”:2
 }

]

}

Event Dictionary

Key: RPEventType Value: Integer
(Event Type
SYN Constant)

The Anatomy of an RDP Handshaking Transmission

Synch (SYN) Datagram

Sent by a probe host (usually as a multicast) to
obtain a Roastmaster IP address.

Its payload should consist of one event with the
SYN Event Type Constant integer.

When Roastmaster receives a SYN request, it
resets it Epoch value for that serial number, and
sends back a corresponding Acknowledgement
(ACK) datagram.

Event Dictionary

Key: RPEventType Value: Integer
(Event Type
ACK Constant)

Acknowledgement (ACK) Datagram

Sent by Roastmaster whenever it receives an SYN
datagram. One ACK is sent back to the originating
address of each SYN packet it receives.

Its payload should consist of one event with the
ACK Event Type Constant integer.

The host should read this datagram, store the
originating address, using it as the IP address of
future datagrams.

Copyright 2017, Rainfrog, Inc. - All rights reserved

7

RDP Constants Reference
To reduce datagram size, RDP uses integer constants to represent some data types. The following chart lists
the constants defined in RDP version 1.0. Roastmaster does not currently utilize RPMetaType, but will as the
protocol is expanded.

RPVersion String Constant

RDP_1.0

RPEventType Integer Constant

1 Sync Request (SYN). Sent from host to
Roastmaster.

2 Sync Acknowledgement (ACK). Sent from
Roastmaster back to host.

3 Temperature
4. Control
5 Pressure
6. Remote
7 User Defined

RPMetaType Integer Constant

3000-3999
Valid Temperature meta types
for events with RPEventType 3:
3000. . . BT Temp
3001 . . . ET Temp
3002 . . . MET Temp
3003 . . . Heat Box Temp
3004. . . Exhaust Temp
3005 . . . Ambient Temp
3006 . . . BT Cooling Temp

4000-4999
Valid Control meta types
for events with RPEventType 4:
4000 . . Gas Rate
4001 . . . Electric Level
4002. . . Drum Speed
4003. . . Fan Speed
4004. . . Damper Setting

5000-5999
Valid Pressure meta types
for events with RPEventType 5:
5000. . . Drum Pressure
5001 . . . Ambient Pressure
5002 . . Exhaust Pressure

6000-6999
Valid Remote meta types
for events with RPEventType 6:
Currently unpublished

7000-7999
User-defined meta types
for events with RPEventType 7:
User defined

Copyright 2017, Rainfrog, Inc. - All rights reserved

8

Important Notes About RDP
Datagram Frequency

It is advisable to send a datagram containing temps for every probe at least once per second, whether
readings have changed or not. This ensures redundancy in cases where UDP packets arrive out of order, or
are dropped altogether.
Furthermore, Roastmaster presents a lost link alert if more than 5 seconds elapse between datagrams. A
higher datagram frequency ensures against lost links.

Keep-alive Datagrams

For special cases where it might not be desirable to send a temp in every datagram, RDP supports
datagrams without a payload. As long as the header information is present, Roastmaster will reset its
internal link timer whenever a datagram is received, whether or not it contains a payload.

Epoch

You are not required to use the RPEpoch header key/value, but it is strongly advised. It you omit this,
Roastmaster will process every packet in the order in which it is received, which is not guaranteed by UDP to
be the original, correct order. Using an epoch value that is incremented after every datagram transmission
ensures that packets are processed in the correct order. If an old packet arrives, Roastmaster simply ignores
it.

Zoning

A probe host can contain multiple
thermocouples. Furthermore, certain
thermocouple amp boards can be wired in
series, allowing a very large number of
thermocouples to be used on the same
host.
Since each RDP serial can support up to 16
logical probe ports, simple zoning can be
accomplished via the “Port” value of RDP
events.
For example, you might have two iPads
running Roastmaster. The first would define
probes on ports 1 and 2, and the second
would define probes on port 3 and 4–all with the same serial. The probe host would send all four probes in
its datagram. Roastmaster would only process the events applicable to itself.
It is also possible to zone a single probe host using multiple “Serial” values. In this case, different instances of
Roastmaster would define probes with different serial values. The probe host would formulate different
datagrams for each serial value, according to its own zoning requirements.
Both of these zoning examples require A) maintaining an array of IP addresses via RDP handshaking instead
of just one IP address, or B) utilizing the multicast method.

Copyright 2017, Rainfrog, Inc. - All rights reserved

9

Formatting JSON
Creating an RDP datagram for WiFi transmission to Roastmaster is a very easy process.
RDP packets are formed using JSON (JavaScript Object Notation). JSON is a means of expressing
programming objects (such as strings, numbers, dictionaries and arrays) with a simple string. The notation
used determines the object types that are represented.

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

 {
 “RPChannel”:2,
 “RPEventType”:3,
 “RPValue”:204.87
 }

 {
 “RPChannel”:3,
 “RPEventType”:3,
 “RPValue”:37.64
 }

]

}

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

{
 "RPVersion":"RDP_1.0",
 "RPSerial":"My Probe Host”,
 “RPEpoch”:1468872420.114,
 “RPPayload”:

 [

 {
 “RPChannel”:1,
 “RPEventType”:3,
 “RPValue”:128.24
 }

]

}

 {
 “RPEventType”:1
 }

]

}

 {
 “RPEventType”:2
 }

]

}

There are many JSON libraries
available for most programming
languages, designed to
automatically convert programming
structures directly to JSON. But,
since an RDP datagram is very
simple, it’s usually easiest to
construct the format yourself in
code, using simple string
concatenation.

Strings

Strings are expressed within quotes, e.g. “Bean”,
“Blend”, etc.

Numbers

Numbers are expressed as numerals without
quotes, e.g. 2.8, 7, etc.

Arrays

Arrays are expressed as comma separated
values, surrounded in square brackets, e.g.
[“Apple”,2,4,“Pear”]

Dictionaries

Dictionaries are expressed as a series of comma
separated key/value pairs, surrounded in
parentheses. Each key/value pair begins with the
key (a string), followed by a colon, and then its
value., e.g. {“Name”:”Robert”, “Age”:21}.

Hierarchical Items

JSON supports hierarchical information, so you
can embed arrays inside dictionaries or
dictionaries inside arrays.
RDP uses this feature to construct a
header/payload format, and to support multiple
events within a single payload.

Pretty-Formatting should be avoided

For the purpose of legibility for this datasheet,
RDP examples are pretty-formatted, with
indentation and paragraph returns. However,
JSON is rarely pretty-formatted in practice.
In code, the example at the top lift would appear
as a continuous string, devoid of indents and
returns:
{"RPVersion":"RDP_1.0","RPSerial":"My Probe
Host”,“RPEpoch”:1468872420.114,“RPPayload”:[{“RPChann
el”:1,“RPEventType”:3,“RPValue”:128.24}]}

Copyright 2017, Rainfrog, Inc. - All rights reserved

10

License
Copyright (c) 2017 • Rainfrog, Inc.
Written by Danny Hall, for Rainfrog, Inc.

Special Thanks

Based on input from countless Roastmaster users.
Evan Graham - Thanks for your incredibly imaginative solution to a seemingly insurmountable enigma
by developing the first working prototype for getting digital readings from a rotating Gene Cafe drum
Robert Swift - Thanks for your impetus, tireless work, vision and code prototyping

Terms of Use

Using, developing, sharing, distributing, selling, promoting, or any other action involving the
Roastmaster Datagram Protocol (RDP), and associated software and documentation, whether personal
or professional, binds you to the following license.

MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of RDP Probe Host
software and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

